A spread relation for entire functions with negative zeros
نویسندگان
چکیده
منابع مشابه
Asymptotics of Zeros for Some Entire Functions
We study the asymptotics of zeros for entire functions of the form sin z+ ∫ 1 −1 f(t)e dt with f belonging to a space X →֒ L1(−1, 1) possessing some minimal regularity properties.
متن کاملConvolution Operators and Zeros of Entire Functions
Let G(z) be a real entire function of order less than 2 with only real zeros. Then we classify certain distributions functions F such that the convolution (G ∗ dF )(z) = ∫∞ −∞G(z − is) dF (s) has only real zeros.
متن کاملConvolution Operators and Entire Functions with Simple Zeros
Let G(z) be an entire function of order less than 2 that is real for real z with only real zeros. Then we classify certain distribution functions F such that the convolution (G ∗ dF )(z) = ∫∞ −∞ G(z − is) dF (s) of G with the measure dF has only real zeros all of which are simple. This generalizes a method used by Pólya to study the Riemann zeta function.
متن کاملDifferential operators and entire functions with simple real zeros
Let φ and f be functions in the Laguerre–Pólya class. Write φ(z) = e−αzφ1(z) and f (z) = e−βzf1(z), where φ1 and f1 have genus 0 or 1 and α,β 0. If αβ < 1/4 and φ has infinitely many zeros, then φ(D)f (z) has only simple real zeros, where D denotes differentiation. 2004 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1990-1028282-x